Implementation of a Transparent Peripheral Component Interconnect
(PCl) Bridge using FPGA |

P.B. Mane* and S.M. Jagdale**

Abstract

PCI (Peripheral Component Interconnect) has become one of the most popular bus standards, not
only for personal computers, but also for industrial computers, communication switches, routers,
and instrumentation. The function of the PCI bridge is to map various control Signals and address
space from one bus to another. The PCI bridge can be programmed to connect direétly. to the Non-
Multiplexed mode or the Multiplexed mode 8-bits, 16-bits, or 32-bit Local Bus. The 32-bit 3 3-MHz
PCl interface provides a user-friendly interface between a Local Bus and a PCI bus. Jt is fully
compliant with PC local bus specification. The PCI interface has both the master and target
capabilities. This PCI interface can be designed on ASIC (Application Speciﬁc Integmted Circuit)
and PLD (Programmable Logic Devices) implementation. The ASIC designed for a PCI bridge to be
sent for fabrication is a time consuming and costly process whereas the PLD are programmable
logic chips that can be éonﬁgured andmade similar to the PCl interface.

This paper presents the implementation of the functionality of a PCI bridge on FPGA SPARTAN-III
Target device using the HDL Verilog language. Timing Simulation is done with Modelsim
Simulation software. The implementation of PCI Bridge on FPGA has led to easy reconfigurability,

improved performance, less time to market and cost effective designs. The synthesis report shows
that the area of utilization on FPGA is about 45 % whichwould save power by about 30%. '

Key Words: HDL, Modelsim, PCI
* E&TC dept., Bharati Vidyapeeth's COEW, Pune, India, (e-mail: pbmane6829@rediff.com)
** E&TC dept. Bharati Vidyapeeth's COEW, Pune, India (e-mail :sumati_jagdale@yahoo.com)

1. Introduction interfaces. The bridge functions as a target and
also as a master interface during the transaction
between the buses [1]. PCI Bridge allows
relatively slow local bus designs to achieve 132
MB/s burst transfers on a PCI bus. The Bridge
can be programmed to connect directly to
multiplexed or non-multiplexed 8, 16 or 32 bit
local bus. The 8- and 16- bit modes enable easy
conversion of ISA (Industry Standard
Architecture) design to PCI. -

The notion of bridging plays a significantrole in
PCI architecture due to electrical limitations on
the number of devices residing on a single PCI
bus segment. There are three basic types of PCI
bridges: PCI host controllers, transparent PCI
bus bridges, and nontransparent PCI bus
bridges. The PCl-to-PCI bridge provides a
connection path between two independent PCI
buses. A PCI bridge (Fig. 1) has two PCI

1 BVCOE'S JMET B

PCI BRIDGE

-
4
s“max»>a
mmHn>z
U
t>00-

ncow
ncw

- K

mm4n>z

=D > > -

Fig. 1 Block diagram of PCI Bridge

1.1 Supported PCI Features

List of the main features silpported by the PCI
Bridge

i) 32-bit/33Mhz data bus

ii) Parity is generated and possible errors are
checked and reported to back-end
application.

i) Type zero Configuration Space.

iv) Burst zero-wait configuration read and
write cycles

v) Dual-access support: the Configuration
Space is accessible from the PCI and the
back-end sideTZ].

2.The PCI bridge architecture

The PCI Bridge architecture (Fig.2) consists of
main modules such as Master, Target,
Configuration space and Parity
Generator/Checker, which consists of a generic
PCI bridge core and user dependent parts such
as Target Data Interface, Dual-port memory and
Host bus interface.

Synchron-
{] Tagat Posted Write Masler
: Contrul Ruller ﬂm mE ":
g Conliguration Y Parly (3en, 3
&l 1 1] Regiser Transoction sost [A
8 ‘1. Bufter a
o] =
2 8
E1 1 L] Pasy Gen. Gonliguration Posied Wie A H
el & Dist. Acvess Butler é
: |
! : |
Synchron- Delay
| L CM:; f—{ izalion Transaclion g:'!“g% = |
i Conteol Bufter | 3

Fig. 2 PCI Architecture

2.1 Functional Description

* Master: an agent that initiates transactions
on the PCI Bridge; it drives commands on
the address phase requesting write or read
accesses to one of the three address spaces
of the PCI Bridge i.e. Configuration, I/O,
Memory [3],[2].

o Target: the slave, which claims and
responds to the transaction initiated on the
PCI Bridge by a master agent.

* Configuration Space Registers: When a
machine is first powered on, ‘the
‘configuration software must scan the
various buses in the system to determine
which devices exist and what
configuration requirement they have. This
process is called scanning of the bus.

° Parity: is generated and possible errors are

checked and reported to back-end
application.

3.Implementation of PCI bridge

All modules from PCI Bridge Architecture.are
implemented on FPGA SPARTAN III device

BVCOE'S JMET

n v o g v =h

©C = = A < S o= W

ii

1i

for the verification of standard PCI
specifications. All modules are written in
behavioral style architecture and combined
with the structural style architecture. Timing
simulation of all modules is done in Modelsim
simulation software.

3.1 Implementation of Master module:

The PCI Master interface connects the Master
module with the Local Bus. This module is
written in behavioral style aschitecture using
FSM (Finite State Machine) % consists of
Master State Machine, AD/CBE Buffer, Parity
Generator/Checker, FIFO IN & FIFO OUT.

Master state Machine: Master state machine
used FSM technique for executing sequential
operation as shownin Fig.3.

Fig. 3 PCI Master State diagram

i) When PCI-to-PCI Bridge is reset, PCI
Master state machine is at IDLE state.

if) It asserts REQ# and detects whether
GNTH# is active. If it is active, the master
State machine enters into ADRESS state.
Itasserts FRAME# and IRDY#.

iii) When Master is in ADDRESS state it
delivers Address, Bus command, byte
enable. IFIRDY#, TRDY# are in asserted
form it enters in the TRANSFER state,
else transaction is terminated.

iv) PCI read or write is carried on, if no
suspension termination detected. The

master state machine will return to IDLE'
state after transferring last data.

3.2 Implementation of the PCI Target
module

The Internal Target Interface links the Target
block of the PCI Bridge with the PCI bus and isa
complete FIFO (First In First Out) interface.
This module is written in behavioral style
architecture using FSM (Finite State Machine).
It consists of the Target State Machine,
AD/CBE Buffer, Parity Generator/Checker,
FIFOIN & F{FO OUT.

The Target state Machine: Target state
machine transactions are performed using the
Master state machine with different state
transition conditions and operations.

Sequential operations are as follows.

i) When the PCI-to-PCI Bridge is reset, the
PCI Target state machine is at IDLE state.

ii) When the Target state machine is in IDLE
state and FRAME# is asserted it enters in
the ADDRESS state.

iii) When the Target state machine. is in
ADDRESS state, it compares accepted
address with its base address and if it does
not match it returns into the IDLE state.
Otherwise, it enters into the TRANSFER

state.

iv) The TRANSFER state is carried on by
asserting DEVSEL# and TRDY# signals,
according to the command operation. If
desired conditions are not matching, the
Target state machine returns to the IDLE

state. Otherwise, transaction termination
is done with the last data transfer.

BUCOE'S JMET

3.3 Implementation of the Configuration
Space

The configuration space has the configuration
registers and handles read/write accesses to
them. It also manages the address decoding for
Memory and I/O cycles. The PCI configuration
space is divided into two parts- the
configuration header and the device specific
configuration register. In the configuration
space format the first 16 dwords are referred to
_ as configuration header from 64 dwords.

34 Implementation parity generation /
" checking

The parity block generates the parity and checks
possible errors for the Master side of the PCI
Bridge. The agent that is driving the PCI AD
" bus has to calculate and manage the parity line

of the Bridge, which is called PAR. The master
drives PAR during the address phase of each
transaction and the data phase of write
operations. The number of “1”’s on AD, CBE#
and PAR equals an even number. This block also
manages the checking of possible parity errors
and drives PERR# signal during read data phase;
it works during write, as well, to report error
informationto the FIFO OUT block [4]. -

4. Simulation and Synthesis Result Of
PCIBridge Module

All modules such as the Master, Target,
Conﬁguratidn Space and parity are simulated
with Modelsim Simulation software version 5.4
and implemented with Xilinx synthesis software
version9.1 on FPGA.

Flo ER Von beet Fomat Took Wndow

i
|

Fig. 5 Simulation Result

e

The
trar
bit.
frec
ind
stat
ass
Re:
low
rea
tra1

Par

eve
Err

Re

]

(2]

(3]
[4]
(5]
[6]

4.1 Synthesis results

Master Target Configuration | Parity

Module Module Space Module | Module

No of 110 104 i) 1

Flipllops

INo of LUTs | 160 152 45 12

No. of 10s 97 97 50 41

5. Discussion

The simulation result (Fig.5) shows the write
transaction of PCI interface Module. The 32
bit address and data is transmitted with 33 MHz
frequency. The 4 bit command/ byte enable
indicates the-write transaction. The transaction
starts when the control signal 'FRAME' is
asserted. The control signals TIRDY" (Initiator
Ready) and 'TRDY' (Target Ready) should be
l_o.\'gv to indicate that the initiator and target are
réady to transmit and receive. The Initiator
transmits the address, command/byte enable
and data that are received by the Target. The
Parity Generator/Checker generates and checks
even parity and indicates it on the PERR (Parity

Error) signal.

The synthesis results show that the number of
flipflops, LUTs, 10s required for all of the
above-mentioned modules is reduced due to the
optimization of the code.

5. Conclusion:

This paper presents the implementation of
functionality of the PCI 32-bit Bridge using
VERILOG. It is implemented on a Spartan-III
FPGA device. The PCI bridge described in this
paper is limited to 32 bits and 33 MHz operating
frequency but both the number of bits and the
operating frequency can be extended. The
implementation of PCI Bridge on FPGA has led
to easy re-configurability, impreved
performance, less time to market and cost
effective designs. The synthesis report shows
that the area of utilization on FPGA is about 45
% that saves about 30% power.

Acknowledgment

We thank the University of Pune for funding our
projecttitled PCI Bridge. '

Reference:

[1] Karl Wang, Chris Brynt,” Designing MPC105 PCI Bridge Memory Controller”, IEEE

transaction, April 95, vol.15.pp.44-49.

[2] Zang Chunha, Shen Changli,"Non Transparent PCI-to-PCI Bridge Based on Verilog And
FPGA” JEEE conference on communications, circuits & systems ,2006,vol. 4,pp. 2282-

2285.

[3] Tom Shanely,DonAnderson, PCISystem Architecture (fourth edition)

[4] “Useful Tips for the PCI System Designer” A white paper at Techonline.com, June 2004.

[5] http://www.plxtech.com
[6] http://www.Eurekatech.com

BVCOE'S JMET

Design and Implementation of a Cross Compiler
Pinaki Chakx:aborty*

Abstract

This paper describes the design and the implementation of a cross compiler. The cross
compiler has been developed to serve as a teaching tool capable of demonsirating the process of
compilation to students in a stepwise manner. The cross compiler has been implementedin the C++
programming language. It uses a subset of the C++ programming language as the source language
and the Intel 8085 assembly language as its object language. The cross compiler comprises of five
phases, viz., lexical analyzer, syntax analyzer, intermediate code generator, code optimizer and code
generator. The bookkeeping module and the error handler module have been also implemented. The
parser used here is nondeterministic in nature where the order of application of the production rules
is determined only at the runtime. The nondeterminism has been realized by associating priorities
with the production rules. Three simple heuristics have been used to improve the performance of the
parser. Apart from the cross compiler, the system includes an editor and a help subsystem.

Keywords: Compiler, cross compiler, parser, shift-reduce parser, nondeterministic parser, heuristic.

*School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, E-mail:
pinaki_chakraborty 163@yahoo.com

1. Introduction level language, called the source language, and
produces as output a functionally equivalent
program in a low level language, called the
object language or the target language [3 5]. A
compiler that runs on one machine and produces
object programs for another machine is known

A course on compiler construction is essential
in any curriculum of computer engineering. The
importance of the subject is well established.
Every subject needs some simple experiments

that can be used for teaching the basic concepts as a cross compiler. The current paper presents
of the subject to the students. Unfortunately, the design and the implementation of a cross

there ?re not many _SHCh suitable experime.nts n compiler called the iXC85. The word iXC85 is
compfler construction. Consequently, a simple an acronym for Intelligent Cross Compiler for
compfler. that. cat demon#rate the p roc?ss of Intel 8085. The cross compiler generates object
compilation in a stepwise manner will be programs for Intel 8085 processors and uses

immensely helpful to -the. students [1, 2] ’Fhe artificial intelligence techniques to do so. Hence
current paper presents a simple cross compiler the name “iXC85” :

developed to serve such a purpose. Special care

has been taken while designing the compiler so This paper does not present any new technique
that intermediate results are available to the for compiler construction. Instead, the focus of

users. These intermediate results can be useful the paper is on employing and thus verifying the

inillustrating the process of compilation. standard concepts of compiler construction to
design and implement a novel cross compiler.

Section 2 presents the overall system structure.
Section 3 discusses the implementation details

It can be recalled that a compiler is a program
that takes as input a program written in a high

BVCOE'S JMET 6

P' of the various phases and modules of the iXC85
. cross compiler. Section 4 provides brief
accounts of the accessories of the cross
compiler and Section 5 concludes the paper.

2. System Organization

The system has been developed as an Integrated
Development Environment (IDE). The IDE
consists of three components, viz., the iIXC85
cross compiler, the Editor 85 editor and the help
subsystem (Fig. 1). The iXC85 cross compiler
has been written in the C++ programming
language and compiled using the Turbo C++
version 3.0 compiler from Borland
International, Inc. The executable file is named
iXC85.EXE. The cross compiler accesses a file
named RULES.TXT for purposes explained

later in Section 3.3. The Editor85 has been ° in a textual format intelligible to the user.

implemented using Microsoft Visual Basic
version 6.0. The executable file is named
E85.EXE. It uses a data file named iXC85.DAT
to store the environmental settings of the editor
between two consecutive sessions. The help
subsystem has been developed using the
Microsoft Help Workshop version 4.03. The
help topics written in rich text format (RTF)
files have been compiled to obtain a help file
named iXC85.HLP.

When a typical source file filename.CPP is
compiled using the iXC85 cross compiler the
object program is obtained as an executable file
filename EXE. The iXC85 cross compiler may
also produce eight text files, OUTL.TXT
through OUT8.TXT, containing the outputs of
the various phases and components of the cross
compiler in a human readable format.

3. The Cross Compiler

Compilers are complex programs [5]. The entire
task of compilation is generally divided into a
‘number of phases. Logically similar tasks are

clubbed into one phase. To some extent, the
number of phases and the tasks handled by each
phase depend on the developers. The iXC85
cross compiler consists of five phases that work
sequentially (Fig. 2). The phases are the lexical
analyzer, the syntax analyzer, the intermediate
code generator, the code optimizer and the final
code generator. Apart from these phases, a
preprocessor, a bookkeeping module and an
error handler module have been also
implemented in the cross compiler.

In the iXC85 cross compiler, each phase
generates its output in two forms (Fig. 2). One
form is used by the next phase and the other form
is meant for the user. While the first form
contains the information in a compresséd binary
format, the latter contains the same information

However, the generation of the latter may be
controlled by providing proper options as
command line argument to the cross compiler.

The iXC85 cross compiler has been
implemented in the C++ programming language
[6, 7]. A subset of the C++ programming
language, defined as C85++, acts as the source
language of the cross compiler while the Intel
8085 assembly language is the object language.
Therefore, in compiler construction
terminology the iXC85 cross compiler can be
represented as.

C85++, C++ Intel 8085 Assembly Language

There are two ways to use the iXC85 cross
compiler. It can be invoked to compile a -
program from the Editor85. Alternatively, the
iXC85 cross compiler may be called from the
command line with the name of the source file
and other arguments. The source directory, the
include directory, the output directory, the base
address of the object program, the base address
of the runtime stack, etc. may be provided

BVCOE'S JMET

optionally with the call.

The structure and the working of the
preprocessor, the five phases and the two
modules of the iXC8S5 cross compiler have been
explained in the rest of this section.

3.1. The Preprocessor

The preprocessor reads the source program one

character at a time. It replaces all macro
statements in the source program with proper
source language statements. The iXC85 cross
compiler supports the '# include' macro. The
‘#include’ macro statement is handled by
including the mentioned file. There are two
modes for including files. If the name of the file
is mentioned within a pair of '<' and ">, then the
include directory is searched for the file.
Otherwise, if the name of the file is mentioned
within a pair of double quotes, then first the
source directory is searched for the file. And,
only if the file is not found there, the include
directory is searched. Using this macro, one or
more files can be included. After handling the
macro statements, the preprocessor deletes the
comments and strips out the redundant white
spaces. Both single line comments, preceded by
a'//', and multiple line comments, enclosed
between a pair of'/*' and '* /', are supported in
the C85++ language.

The preprocessor reports errors on
enéountering an unknown macro, an €rroneous
macro syntax, or if the file mentioned with the
"4 include' macro is not found. On success,
the preprocessor generates a version of the
source program without macro statements,
redundant white spaces and comments.

3.2. The Lexical Analyzer

To develop the lexical analyzer, four finite
automata have been first constructed. They
have been designed to accept the keywords,

identifiers, constants, and operator and
punctuation symbols, respectively. The lexical
analyzer takes as input the output of the
preprocessor and fries to group the characters

. into tokens using the four finite automata. The

finite automata are always used in the order to

. recognize keywords, identifiers, constants,

operators and punctuators. If one of them fails to
recognize a token, the next one is invoked at the
same position of the source program. The four
finite automata work independently of each
other. If the lexical analyzer recognizes a token
of the identifier type, then a bookkeeping
module-is called to install the identifier in the
symbol table if it is not there already.

Alexical error is reported when the sequence of
characters in the source program cannot be
grouped into any legal token. On success, the
lexical analyzer generates a stream of tokens as
its output. In this stream, each token is
represented by a pair of a type and a value field

(Fig.3b).
3.3. The Syntax Analyzer

The output of the lexical analyzer is fed to the
syntax analyzer. To develop the syntax analyzer
or the parser, a context free grammar for the
source language has been first constructed. The
grammar contains 17 nonterminals;$0 terminals
and 66 production rules. The nonterminal
'program' is the start symbol of the grammar.
According to their usage, the production rules
can be broadly classified into three categories as
follows.

1 Program related production rules. They
specify the overall structure of a
program.

2. Expression related production rules.
They are used to construct expressions

using the different operators.
Q

BUCOE'S JMET

L B T B

O T T T

Y

e i

TSR T e Ty

3 Statement welated production rules.
They define different types of
statements in a program.

The parser used in the iXC85 cross compiler is a
nondeterministic shift-reduce parser. It tries to
reduce the source program to the start symbol.
The term nondeterministic signifies that the
order in which the production rules are applied
is dynamic instead of being predetermined. The
nondeterminism comes from associating
priorities to the production rules in a way
similar to the one used by Humenik and
Pinkham {8]. The production rules are matched
in the descending order of their priorities. To
add to the nondeterministic behavior, the
priorities of the production rules change
dynamically. The priorities of the production
rules are whole numbers between 0 and 899.
The initial value of the priorities of each
production rule is predetermined. These initial
values are assigned to the production rules
according to their probability of being used. The
priority of a production rule increases on being
used recently or if its use in near future is
predicted by some other production rule.
However, the priority of a production rule
cannot be allowed to increase inﬁnitély. To
ensure this, the production rules are divided into
18 disjoint classes, each with a distinct priority
range. A production rule in a class can have up to
50 values for its priority. Since, the priority of a
production rule can only increase and there isno
mechanism to decrease its value, it may easily
reach the maximum limit of its class.
Consequently, this prioritization approach
works very well for small programs but
becomes less effective with the increase in the
program size.

The entire parsing process revelves around
applying production rules iteratively to parse
the source program. Since the number of

production rules is not smali, there may be too
many permutations. But if studied carefully, it
can be noticed that all production rules are fiot
equally likely to be applied at a particular instant
of parsing the program. To narrow the search
some heuristics can be used. Three simple
heuristics [9], as follows, have been realized in
the parser.

o Heuristic 1. Some production rules
inherently have more probability of being used
than other production rules. So each production
rule is assigned an initial priority according to its
chance of beiflg used. The production rules are
applied in the descending order of their
priorities. Therefore, while applying the
production rules, a production rule with a

. greater priority is given preference over another

with a lower priority.

) Heuristic 2. If a particular production
rule is applied to parse a program, it is generally
done so for more than once. So, every time a
production rule is applied, its priority is
incremented by one. Thus the most frequently
used production rules gain priority over the
others.

. Heuristic 3. It can be observed that some
production rules are generally used in cascade.
The application of a production rule in such a
cascade can predict the use of the next
production rule in the sequence. In such a case,
the priority of the predicted production rule is
increased by two.

These heuristics speed up the parsing of a large
number of source programs and they can be
expected to work well for an average source
program. Hence, it can be said that the use of
these heuristics makes the cross compiler
intelligent. These heuristics also take care of the
precedence and the associativity of operators
defined in the source language.

BVCOE'S JMET

The production rules have been encoded so that
the parser can easily rgad them and modify their
priorities. Accordingly, each type of terminals
and nonterminals is assigned a unique 3-digit
numeric code that appears in the sentential
forms while parsing. Each production rule is
represented as a sequence of its rule number,
initial priority, predicted next production rule,
nonterminal in left hand side of the production
rule and the terminals and nonterminals on the
right hand side of the production rule. Each of
these values is denoted as a 3-digit code. The
production rules thus encoded have been stored
in a file named RULES.TXT and are accessed
by the parser before the start of the parsing
process. The production rules have been
provided separately from the main program so
that a user can modify the initial priorities and
the predicted next production tules of the
production rules to parse their jifdgrams more
effectively. Thus, the assortment of production
rules can be considered analogous to a
knowledgebase of an expert system.

The parser starts its operation by reading the
production rules form the file RULES.TXT and
sorts them according to their initial priorities.
Then the parser reads a stream of tokens from
the output of the lexical analyzer and stores
them in a buffer. Next flfe parser selects the
production rule with the highest priority and
tries to match its right hand side with a portion
of the content of the buffer. If they match, then
that portion of the buffer is replaced by the left
hand side of the production rule. If they do not
match, then the same procedure is repeated with
the next production rule. Finally, the priorities
of the production rules are updated and sorted.
This process is carried out iteratively until no
more reduction is possible. Then the parser
declares success if and only if the buffer
contains only the start symbol. Otherwise, the

4

error handler module is called to handle a
parsing error.

The syntax analyzer, reports an error if the file
named RULES.TXT is not found. Another type
of error that may be reported by the syntax
analyzer is a parsing error. On success, the
parser generates the parse tree as its output (Fig.
4). The parse tree is represented by a list of nodes
in which each node is denoted by a type,
production rule used to derive it, number of
children nodes and a list of children nodes, if any

(Fig.3c).
3.4. The Il’itermediate Code Generatt_)r

The intermediate code generator uses the

information stored in the nodes of the parse tree -

to produce three address instructions. The three
address instructions are realized as quadruples
using a record structure of four fields, viz., op,
operandl, operand2 and result. Such a
record typically stands for an operation of the
form result := op
operand2. An important benefit of using
quadruples is that they allow the statements to be
moved around in the code optimization phase.
The intermediate code generator creates a new
temporary object to store an intermediate result
whenever required. The temporary objects thus
created are inserted in the symbol table.
However, there may arise situations where the
symbol table gets cluttered up with a large
number of temporary objects.

operandl

On completion, the intermediate code generator
generates a sequence of simple machine
independent instructions as its output. Each
instruction is represented by a quadruple (Fig.
3d). In these instructions, a temporary name is
denoted by a '$' symbol followed by a natural
number. And the position of an identifier in the
symbol table is enclosed between a pair of
‘['and']".

Q
BUCOE'S JMET

10

S A o L\cx = v SR 3 I

O

e Gms meTEAR

3.5. The Code Optimizer

The code optimizer sequentially reads the
instructions produced by the intermediate code
generator. It improves an instruction or a few,
consecutive instructions if there is a scope to do
so. In this cross compiler only some trivial
machine independent optimization techniques
have been implemented.

On completion, the code optimizer generates
another sequence of simple instructions as its
output (Fig. 3e). This sequence of instruction is
an improved version of the output of the
intermediate code generator. However, on some
occasions there may not be any scope of
improvement and the two sequences of
instructions are identical.

3.6. The Code Generator

The final code generator sequentially reads the
instructions produced by the code optimizer and
produces their Intel 8085 assembly language
equivalents. A single intermediate language
instruction may be translated into one or more
Inte] 8085 assembly language instructions.
Unlike the instructions produced by the
intermediate code generator, these instructions
are machine specific and deal with the actual
registers of the target processor.

On completion, the code generator generates

or making an inquiry is O (n), where n is the
number of entries already in the symbol table.

Whenever the lexical analyzer recognizes an
identifier it calls a bookkeeping routine to install
the identifier in the symbol table if it is not
already installed. The identifiers recognized by
the lexical analyzer are permanent objects. The
intermediate code generator may call the same
bookkeeping routine to install some temporary
objects in the symbol table. These temporary
objects are generated by the compiler and do not
appear anywh/efe in the source program. The
names of these temporary objects consists of a
'$' symbol followed by a natural number. The
temporary objects are simiilar to the permanent
objects in all other respects. The bookkeeping

" module generates a copy of the symbol table at

the aforesaid sequence of Intel 8085 assembly -

language instructions as its output (Fig. 3f).
This sequence of instruction is functionally
equivalent to the source program written in the
C85++language.

3.7. The Book keeping Module

The bookkeeping module includes a symbol
table which is implemented as a linear list of
records. Each record consists of a known
number of consecutive words in the memory. In
this approach, the cost of entering a new name

the end of the compilation process as its output
(Fig.32).
3.8. The Error Handler Module

Whenever any phase or module of the cross
compiler finds itself in an out of order situation,
which it cannot deal with, it calls the error
handler module with proper arguments. The
error handler used in the iXC85 cross compiler is
a trivial one. On detecting an error, it just
generates an error message and stops all
activities of the cross compiler. The error
messages refer to the source program only and
not any internal representation of it. To help the
user in debugging the programs, the error
messages are kept simple and easy to
understand.

4, TheAccessories

As mentioned in Section 2, the IDE consists of
two utility programs apart from the iXC85 cross
compiler. The editor and the help subsystem aid
the use of the iXC85 cross compiler. Brief
accounts about them are given next.

11

BVCOE'S JMET

= 4.1. The Editor

The Editor85 is a simple text editor program
intended to facilitate the use of the iXCR85 cross
compiler. It assists in the development of
efficient programs that may be compiled using
the iXC85 cross compiler. It supports activities
like creating new programs, editing programs,
compiling programs and printing them.
Editor85 is able to explicitly specify the base
addresses of the object program and the runtime
stack. It can also display the output of each
phase individually whenever asked by the user.

The Editor85 is a GUI based editor which acts
as an interface between the user and the iXC85
cross compiler. Itisa menu-driven program and
it is easy to use. It also supports a toolbar that
can be customized at the runtime. The Editor85
supports its own set of shortcut keys and some
standard Windows shortcut keys. It supports
Multiple Document Interface (MDI) so that the
user can work with more than one source file at
atime.

Although Editor85 is specially developed to
support the use of the iXC85 cross compiler,
other editors or IDEs can also be used to
develop programs for the iXC835 cross
compiler. The performance of the iXC85 cross
compilerisnot affected by the use of suchtools.

4.2. The Help Subsystem

The help subsystem provides help and support
on 55 topics covering different aspects of the
X85 cross compiler that can be navigated
using 220 internal links. Whenever a topic is
viewed, links to topics related to it are also
displayed. It also supports indexing and
searching activities. Hall and Zeck
compressions have been used to reduce the size
of the help file by about 36.82%.

<

5. Concluding Remarks

The development of the X85 cross compiler
has been an interdisciplinary venture requiring
the knowledge of compiler construction,
artificial intelligence and microprocessor
systems. It has been an academic endeavor that
can immensely help students and researcher to
understand the design and the working of a
simple compiler. The iXC85 cross compiler
also helps the students to learn to write
programs in Intel 8085 assembly language and
determing the difference between machine
generat'/ed prograins and hand written
_ programs. Accordingly, the iXC85 cross
compiler can be applied as a pedagogical tool
for teaching several courses ranging from
microprocessor systems to compiler
construction and system programming. Apart
from its academic applications, the iXC85 cross
compiler can be used to effortlessly develop
assembly language programs for commercial
microprocessor applications. The iXC85 cross
compiler can be beneficial to naive as well as
expert programmers. '

To further enhance the capabilities of the iXC85
cross compiler, the following tasks may be

undertaken.

1. The source language may be extended
to include different data types and high
level language constructs like
structures, classesand templates.

2. The grammar may be enhanced by
adjusting the priorities of the
production rules.

3. Extensive code optimization
techniques may be included.

4. The compiler can be improved to
generate more efficient object
programs by removing redundant load

Fiicoesumer

12

and store instructions. This will require

addressing the register allocation and

register assignment problems in the

Acknowledgements

The author would like to acknowledge S.
Chandana-Taneja and late Prof. R. G. Gupta for

code generator. e
supervising this research.
RULES.TXT
Production
rules
filename.CPP filename. EXE
Source Program Object Program

Filename
and options

Command line —

Filename
and options

iXC85.EXE

settings

iXC85.HLP

OUT1.TXT OUT2.TXT
OUT3.TXT OUT4.TXT
OUT5.TXT: OUTE.TXT
OUT7.TXT OUTB.TXT

Environmental

iXC85.DAT

Fig. 1. The overall system organization.

Bookkeeping
: Module

OUT7.TXT

filename.CPP
Source program

{1

Preprocessor

lL b ouT.TXT

Lexical Analyzer

i) b ouT2.TXT

Syntax Analyzer

lL b ouTaTXT

Intermediate Code Generator

Error Hand!
* Module

:

\L & ouT4TXT

Code Optimizer

ll_ b outsTxT

Code Generator

u b ouTe.TXT

ﬁléname.EXE
Obiject program

OUTB.TXT

Fig. 2. Phases and modules of the iXC85 cross&compiler.

13

BVCOE'S JMET

-

x=y+z*1; Tokens :

Type Value
8 1
- 15 1
8 2
10 1
8 3
10 3
9 1
. 16 6

@ - (b)

Nodes of the Parse Tree :

Node No. Type Rule No. of Children Children
1 108 0 0
2 132 0 0 .

3 108 0 0 \

q 110 0 0 ;

5 108 0 0 '

6 112 0 0

7 109 0 .0 -
8 150 0 0

9 003 3 1 1

10 003 3 1 3
11 003 3 1 5
12 002 2 1 7
13 015 14 3 11 6 12
14 G15 18 3 10 4 13
15 015 42 3 9 2 14
16 017 58 2 15 8
17 016 57 1 16
18 001 1 1 17

(c)

Quadruples : Quadruples :

Operator Operandl Operand2 Result | |Operator Operandl Operand? Result
7 [2] 1 [3] 3 [1] [2] [4]
3 [1] [3] [4] 2 [4] 0 [0]
2 [4] 0 [0] 1 0 0 0
1 0 0 0

(d) (e)

Instructions : Identifiers :

LDA 2001 . Type Name

MOV B,A [0] & X

LDA 2002 [1] 8 y

ADD B [2] 8 z

STA 2000 [3] 8 $1

HLT [4] 8 §2

(f) (9)

Fig. 3. Compilation of (a) a sample fragment of source code to obtain the outputs of (b)
lexical analyzer, (c) syntax analyzer, (d) intermediate code generator, (e) code optimizer,
(f) code generator and (g) bookkeeping module.

Q

BVCOE'S JMET 14 -

program

statement_sequence

statement

integer_literal

Fig. 4. Parse tree generated by the syntax analyzer for the given source code fragment.

References ' |

[1] Chakraborty, P. 2007. A language for easy and efficient modeling of Turing machines.
Progress in Natural Science, 17(7): 867-871. _

[2] Chakraborty, P.and Gupta,R. G.2008. A simple object oriented compiler, Proceedings of the
National Conference on Information Technology and Competitive Dynamics, pp. 203-215.

[3] Aho,A.V.and Ullman, J. D. 1977. Principles of Compiler Design. Addison-Wesley.

[4] Abo,A.V,Lam,M. S, Sethi, R. and Ullman, J.D.2007. Compilers: Principles, Techniques
and Tools. Addison-Wesley.

[S] Holub,A.I 1990. Compiler Designin C. Prentice-Hall.

[6] Stroustrup, B. 1986. The C++ Programming Language. Addison-Wesley.

[7] 1S0.2003. Programming Languages C++. ISO/IEC 14882:2003.

[8] - Humenik, K. and Pinkham, R. 8. 1990. Production probability estimators for context free
grammars. Journal of Systems and Software, 12(1): 43- 53.

%]

Chakraborty, P. 2008. Use of heuristics in shift-reduce parsers. Proceedings of the
International Conference on Data Management, pp 103-109. :

15 BVCOE'S JMET

